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We prove that the support of the unique measure solution for the spatially homoge-
neous Boltzmann equation in R

3 is the whole space, if the initial distribution is not
a Dirac measure and has 4-order moment. More precisely, we obtain the lower bound
of exponential type for the probability of any small ball in R

3 relative to the measure
solution.
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1. INTRODUCTION AND MAIN RESULT

Let us consider the spatially homogeneous Boltzmann equation in R
3

∂

∂t
f (ξ, t) = Q( f, f )(ξ, t), f (ξ, 0) = f0(ξ ), (1)

where f (ξ, t) is a non-negative function which describes the velocity distribution
of the particles in a dilute gas, and Q( f, f ) is the Boltzmann collision operator
which is given by

Q( f, f )(ξ ) =
∫

R3

∫
S2

B(ξ − ξ∗, ω)[ f (ξ ′) f (ξ ′
∗) − f (ξ ) f (ξ∗)]dξ∗dω.

In the above definition, S2 is the unit sphere in R
3, and ξ ′, ξ ′

∗ are the velocities of
a pair of particles after a collision, which have velocities ξ, ξ∗ before the collision.
They are related by {

ξ ′ = ξ − (ξ − ξ∗, ω)ω,

ξ ′
∗ = ξ∗ + (ξ − ξ∗, ω)ω.

(2)
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The non-negative function B(ξ − ξ∗, ω) is the so called collision kernel. General
theory for the Boltzmann equation can be found in the monographes.(5,7,8)

In this paper, we deal only with the so-called Maxwellian molecules and hard
potentials with angular cut-off (including hard sphere models). So, the collision
kernel has the form

B(ξ − ξ∗, ω) := |ξ − ξ∗|βb(θ ), θ := arccos(|ξ∗ − ξ |−1|〈ξ∗ − ξ, ω〉|),
where β ∈ [0, 1] and∫ π/2

0
b(θ ) sin θdθ < +∞ ⇔ Kb :=

∫
S2

b(θ )dω < +∞. (3)

The mathematical theory for the space homogeneous Boltzmann equation, in-
cluding the existence and uniqueness, moments estimates, pointwise lower bounds
and L p-estimates, is by now rather complete. The readers may find these materials
in Ref. 1–4, 9–12, 14, 15, 18–21. In the situation of angular cut-off, the existence
and uniqueness was established recently by Mischler-Wennberg(15) under minimal
assumption on the initial datum f0 ≥ 0:∫

R3

f0(ξ )(1 + |ξ |2)dξ < +∞.

We are concerned with the lower bound estimates in the present paper. This
problem can be traced back to Carleman’s pioneering work,(4) in which he showed
for hard potentials that the positively radial solution to Eq. (1) in weighted L∞

space:

L∞
6 (R3) = { f (ξ ) : f (ξ ) is measurable and sup

ξ∈R3

(1 + |ξ |6)| f (ξ )| < ∞}

has an exponential lower bound of the following form

∀t0 > 0, ε > 0, ∃K0, K1 ⇒ f (t, ξ ) ≥ K0e−K1|ξ |2+ε

, for allt ≥ t0, ξ ∈ R
3. (4)

This result was greatly improved by Pulvirenti-Wennberg in Ref. 19, in which they
proved, under the assumption that the initial datum has finite mass, energy and
entropy, that a Maxwellian lower bound for the solution to Eq. (1) exists. More
precisely, they obtained that

∀t0 > 0, ∃K0, K1 ⇒ f (t, ξ ) ≥ K0e−K1|ξ |2 , for all t ≥ t0, ξ ∈ R
3.

In particular, this means that the particles immediately fill up the whole velocity
space. In their proof, the Carleman representation plays a crucial role.

It is well known that an exponential type lower bound estimate like (4) for
the solution to Eq. (1) plays an important role in the study of the “entropy-entropy
production” method to prove the convergence of solution to equilibrium.(6,10,22,23)

Recently, this kind of estimates are derived for the spatially inhomogeneous
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Boltzmann equation with periodic boundary conditions by Mouhot.(16) Obviously,
Pulvirenti-Wennberg’s result is a special case of Mouhot’s result, furthermore,
Mouhot gave a method which enables one to remove the assumption of
boundedness of the entropy of initial datum.

We now turn to the spatially homogeneous Boltzmann equation with measure
form which was studied recently by the authors in Ref. 24. For p ≥ 0, let Mp

(resp. Pp) denote the set of finite signed measures (resp. probability measures) on
R

3 with finite p-th order moments. Then Mp is a Banach space under the norm

‖µ‖var,p :=
∫

R3

(1 + |ξ |2)
p
2 |µ|(dξ ),

where |µ| denotes the total variation measure of signed measure µ.
Consider the following spatially homogeneous Boltzmann equation in M2:

∂µt

∂t
= Q(µt ), µ0 = ν ∈ P4, (5)

where the collision operator Q acting on µ ∈ M2 is defined by the bounded linear
functional on Cb(R3), the set of bounded continuous functions on R

3

Q(µ)(φ) =
∫

R3

∫
R3

∫
S2

[φ(ξ ′) + φ(ξ ′
∗) − φ(ξ ) − φ(ξ∗)]

×B(ξ − ξ∗, ω)µ(dξ )µ(dξ∗)dω. (6)

The existence and uniqueness of conservative solution to Eq. (5) were estab-
lished in Ref. 24. A natural question for the unique solution µt is now put forward:
for any positive time t , does the distribution µt of velocity fill up the whole space?
That is to say, would the support of measure µt be R

3?
If µ0 = δv for some v ∈ R

3 is a Dirac measure, then the unique solution is
given by µt ≡ δv . Clearly, this can be explained in physics that no collision occurs
if there is only one particle in a gas. Except for this case, we can still ask this
question. To solve this problem, a key step is to make a detailed analysis for the
transformation (12).(2) Here the Carleman representation is absent. In the present
paper we shall give an affirmative answer for this problem and mainly prove that

Theorem 1.1. Let Bε(ξ0) be the open ball in R
3 with center ξ0 and radius ε. For

fixed µ0 ∈ P4, assume that there are two distinct points v,w ∈ R
3 such that for

ε > 0 sufficiently small

f (ε) := µ0(Bε(w))µ0(Bε(v)) > 0,

then for any δ > 0, there are positive constants ε0 < 1 and Ci , i = 1, · · · , 5 such
that

µt (Bε(ξ0)) ≥ C1 exp{−C2t − C3|ξ0|2+δ + C4|ξ0|2

× [log(ε f (C5ε/(|ξ0|α + 1))) − t + log(t ∧ 1)]}
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for all ξ0 ∈ R
3, ε ∈ (0, ε0) and t > 0, where α = 2 log 5/ log 2.

Remark 1.2. Assume that µ0 = δv + δw + ν for two distinct points v,w ∈ R
3

and ν ∈ P4, then for any t > 0 and δ > 0, there are positive constants ε0 < 1 and
Ct > 0 such that

µt (Bε(ξ0)) ≥ Ct · exp{Ct |ξ0|2+δ log ε}
for all ξ0 ∈ R

3 and ε ∈ (0, ε0].

Corollary 1.3. If µ0 ∈ P4 is not a Dirac measure, then the support of µt for any
t > 0 is the whole space.

Proof: We only need to prove that there exist two points v,w such that for any
open set V � v and W � w, µ0(V ) > 0 and µ0(W ) > 0. In fact, first, since µ0

is a probability measure, there is a v ∈ R
3 such that µ0(V ) > 0 for any open set

V with v ∈ V . Secondly, suppose that for any w �= v, there is a neighborhood
Ww of w such that µ0(Ww) = 0. Then we have µ0(R3\{v}) = 0, this means that
µ0({v}) = 1, and is contrary to the assumption.

Remark 1.4. Although the results are proved in R
3, the conclusions in this paper

still hold for any dimension N ≥ 2.

2. PROOF OF THEOREM 1.1

Let us first recall two notions about the support and order of measures.

Definition 2.1. Let µ ∈ M0 be a finite positive measure. The support of µ is
defined as the smallest closed subset U of R

3 with µ(U c) = 0.

Definition 2.2. For µ, ν ∈ M0, we say µ ≥ ν if for any A ∈ B(R3) it holds
µ(A) ≥ ν(A), where B(R3) is the family of Borel sets.

Remark 2.3. µ ≥ ν is equivalent to µ(φ) ≥ ν(φ) for all φ ∈ C+
b (R3), positive

bounded continuous function.

In the sequel we denote by Bε(ξ ) the open ball in R
3 with center ξ and

radius ε. For v,w ∈ R
3 and r > 0, let Sv,w(r ) := ∂ Br ((v + w)/2) = {ξ ∈ R

3 :
|ξ − (v + w)/2| = r}. Simply write Sv,w := Sv,w(|v − w|/2). For any r > 0 and
ω0 ∈ S2, put

Aω0 (r ) := {ω ∈ S2 : |ω − ω0| < r},
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then

the area of surface Aω0 (r ) =
∫

Aω0 (r )
dω ≥ Cr2, (7)

where C > 0 is independent of ω0.
For µ ∈ P0, let L(µ) be defined by

L(µ)(ξ ) :=
∫

R3

∫
S2

B(ξ − ξ∗, ω)µ(dξ∗)dω.

Then by (3)

L(µ)(ξ ) = 2Kb

∫
R3

|ξ − ξ∗|βµ(dξ∗)

≤ 2Kb(|ξ |β + Mβ(µ)). (8)

Let µt be the unique conservative solution to Eq. (5). For t > s ≥ 0, put

Gt
s(ξ ) := exp

{
−

∫ t

s
L(µτ )(ξ )dτ

}
.

Then by Mβ(µτ ) ≤ M2(µτ ) = M2(µ0) and (8), we have

Gt
s(ξ ) ≥ exp

{−2Kb(|ξ |β + M2(µ0))(t − s)
}

≥ exp
{−C0(1 + |ξ |β)(t − s)

} =: ht
s(ξ )

for some C0 > 0.
By the uniqueness to Eq. (5), it is easy to see that the following Duhamel

formula holds in the dual sense:

µt = Gt
0µ0 +

∫ t

0
Q+(µs)Gt

sds,

where Q+(µ) is defined by

Q+(µ)(φ) :=
∫

R3

∫
R3

∫
S2

[φ(ξ ′) + φ(ξ ′
∗)]B(ξ − ξ∗, ω)µs(dξ )µs(dξ∗)dω.

More precisely, for any φ ∈ C+
b (R3)

µt (φ) = µ0(φGt
0) +

∫ t

0
Q+(µs)

(
Gt

sφ
)
ds. (9)

Before proving our main result, we first give a useful lemma.

Lemma 2.4. Let v,w ∈ R
3. The mapping S2 � ω �→ wv(ω) := v − (v −

w,ω)ω ∈ Sv,w is onto.
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Proof: Noting that

|v − w − 2(v − w,ω)ω| = |v − w|,
we have wv ∈ Sv,w. Let us prove that ω �→ wv(ω) is onto. For ξ ∈ Sv,w, we obvi-
ously have

(v − ξ, v − w) = |v − ξ |2.
If ξ = v, we may take ω ∈ S2 such that ω⊥(v − w). If ξ �= v, we may take
ω = v−ξ√

(v−ξ,v−w)
∈ S2 such that wv(ω) = ξ . �

In the sequel we shall fix the points v,w in Theorem 1.1, and a positive
number r0 being less than |v − w|/4.

Without any loss of generality, we may assume that b(θ ) ≥ b0 > 0. In fact,
from the proof below it is seen that the angle θ = arccos(|(ξ − ξ∗, ω)|/|ξ − ξ∗|)
can be taken apart from 0 and π/2. If we let r0 and ε0 below small enough, θ will
be near π/4.

One makes the following convention: the positive constant C =
C(v,w, β, b0, r0, ε0) has different values in different occasions.

We first prove the following lemma.

Lemma 2.5. For any ξ0 ∈ Br0 ((v + w)/2) and 0 < ε < r0/2, we have for any
t > 0

µt (Bε(ξ0)) ≥ Ct2e−Ctε6 f 2(ε/25).

Proof: First of all, we consider the plane through v,w and ξ0, which intersecting
with Sv,w gives a large circle Cv,w(see the following figure).
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From the above figure it is clear that there exist ζ1, ζ2 ∈ Cv,w such that

ξ0 ∈ Sζ1,ζ2 , |v − w| > |ζ1 − v| = |ζ2 − v| ≥ |v − w|
5

,

|ζ1 − ζ2| > 2|v − w|/5.

Moreover, noting that S2 � ω �→ ζ1 − (ζ1 − ζ2, ω)ω ∈ Sζ1,ζ2 is onto, we have for
some ω0 ∈ S2

ξ0 = ζ1 − (ζ1 − ζ2, ω0)ω0.

Hence for any (ξ, ξ∗, ω) ∈ Bε/5(ζ1) × Bε/5(ζ2) × Aω0 (ε/(5|v − w|)), we have

|ξ − (ξ − ξ∗, ω)ω − ξ0| = |ξ − (ξ − ξ∗, ω)ω − ζ1 − (ζ1 − ζ2, ω0)ω0|
≤ 2|ξ − ζ1| + |ξ∗ − ζ2| + 2|ζ1 − ζ2| · |ω − ω0|
≤ ε.

This means

{ξ − (ξ − ξ∗, ω)ω : ξ ∈ Bε/5(ζ1), ξ∗ ∈ Bε/5(ζ2),

ω ∈ Aω0 (ε/(5|v − w|))} ⊂ Bε(ξ0).

Thus, from (9) and (7) we obtain

µt (Bε(ξ0)) ≥
∫ t

0

∫
R3

∫
R3

∫
S2

B(ξ − ξ∗, ω)1Bε(ξ0)(ξ
′)Gt

s(ξ ′)µs(dξ )µs(dξ∗)dωds

≥
∫ t

0

∫
Bε/5(ζ1)

∫
Bε/5(ζ2)

∫
Aω0 (ε/(5|v−w|))

× |ξ − ξ∗|βb(θ )ht
s(ξ ′)µs(dξ )µs(dξ∗)dωds

≥ Cε2
∫ t

0
e−C(t−s)µs(Bε/5(ζ1))µs(Bε/5(ζ2))ds,

where in the last step we have used that |ξ ′| ≤ 2|ξ | + |ξ∗| and

ht
s(ξ ′) ≥ exp

{−C0(1 + (2|ξ | + |ξ∗|)β)(t − s)
}
.

Let us now estimate µs(Bε/5(ζ1)) and µs(Bε/5(ζ2)). It is the same reason as
above that there is an ω1 ∈ S2 such that v − (v − w,ω1)ω1 = ζ1. Thus we have{

ξ − (ξ − ξ∗, ω)ω : ξ ∈ Bε/25(v), ξ∗ ∈ Bε/25(w),

|ω − ω0| <
ε

25|v − w|
}

⊂ Bε/5(ζ1).
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Therefore, applying the Duhamel formula (9) again, we obtain

µt (Bε/5(ζ1))

≥
∫ t

0

∫
R3

∫
R3

∫
S2

B(ξ − ξ∗, ω)1Bε/5(ξ0)

× (ξ ′)Gt
s(ξ ′)Gs

0(ξ )Gs
0(ξ∗)µ0(dξ )µ0(dξ∗)dωds

≥
∫ t

0

∫
Bε/25(ζ1)

∫
Bε/25(ζ2)

∫
Aω0 (ε/(25|v−w|))

× |ξ − ξ∗|βb(θ )ht
s(ξ ′)hs

0(ξ )hs
0(ξ∗)µ0(dξ )µ0(dξ∗)dωds

≥ Cε2

(∫ t

0
e−C(t−s)e−2Csds

)
µ0(Bε/25(ζ1))µ0(Bε/25(ζ2))

≥ Cε2 f (ε/25)e−Ct (1 − e−Ct ).

Combining the above calculation gives the result. �

The following two lemmas will be used to produce the iteration program as
in Ref. 19.

Lemma 2.6. For any ξ0 ∈ R
3, denote r (ξ0) = |ξ0 − (v + w)/2|. Then for any

ε < r (ξ0)/5, there exist points ζ1, ζ2 ∈ Sv,w( r (ξ0)√
2

) and ω0 ∈ S2 such that

|ζ1 − ζ2| = r (ξ0), |ξ0 − ζ1| = |ξ0 − ζ2| = r (ξ0)√
2

,

ξ0 = ζ1 − (ζ1 − ζ2, ω0)ω0.

Therefore,{
ξ − (ξ − ξ∗, ω)ω : ξ ∈ Bε/5(ζ1), ξ∗ ∈ Bε/5(ζ2), |ω − ω0| <

ε

5r (ξ0)

}
⊂ Bε(ξ0).

Proof: The existences of ζ1, ζ2, ω0 follow from Lemma 2.4. See the following
figure. �

Lemma 2.7. For any t > s ≥ 0, it holds that for each φ ∈ C+
b (R3)

µt (φ/Gt
0) ≥ µs(φ/Gs

0).

In particular,

µt ≥ Gt
sµs . (10)
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Proof: A simple calculation gives

d

dt
µt (φ/Gt

0) =
∫

R3

∫
R3

∫
S2

[φ(ξ ′)/Gt
0(ξ ′) + φ(ξ ′

∗)/Gt
0(ξ ′

∗)]µt (dξ )µt (dξ∗)dω ≥ 0.

This shows that t �→ µt (φ/Gt
0) is increasing, and the result follows. �

Now we can give

Proof of Theorem 1.1. Let ξ0 ∈ R
3 be such that r (ξ0) := |ξ0 − (v + w)/2| ≥ r0,

and 0 < ε < ε0 < 1 be sufficiently small. For any t > 0, by Lemma 2.6. and (9)
(10) we have

µt (Bε(ξ0))

≥
∫ t

t
2

Q+(
Gs

t
2
µ t

2

)(
1Bε(ξ0)G

t
s

)
ds (11)

=
∫ t

t
2

∫
R3

∫
R3

∫
S2

B(ξ − ξ∗, ω)1Bε(ξ0)

× (ξ ′)Gt
s(ξ ′)Gs

t
2
(ξ )Gs

t
2
(ξ∗)µ t

2
(dξ )µ t

2
(dξ∗)dωds

≥ b0

∫ t

t
2

∫
Bε/5(ζ1)

∫
Bε/5(ζ2)

∫
Aω0 (ε/(5r (ξ0)))
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× |ξ − ξ∗|βht
s(ξ ′)hs

t
2
(ξ )hs

t
2
(ξ∗)µ t

2
(dξ )µ t

2
(dξ∗)dωds

≥ b0

∣∣∣∣r (ξ0) − 2ε/5√
2

∣∣∣∣
β

ε2

25 · r (ξ0)2

(∫ t

t
2

ht
s(C |ξ0|)hs

t
2
(C |ξ0|)ds

)

×µ t
2
(Bε/5(ζ1))µ t

2
(Bε/5(ζ2))

≥ C3ε
2r (ξ0)β−2te−C4t |ξ0|β µ t

2
(Bε/5(ζ1))µ t

2
(Bε/5(ζ2)). (12)

Here the constant C3 is less than 1 and independent of ε, t, ξ0.
Let n = [log r (ξ0)

r0
/ log

√
2] + 2, where [a] denotes the integer part of real

number a. By r (ξ0) ≤ |ξ0| + |v + w|/2, and noting that

2n = en log 2 ≤ 4e2 log
2r (ξ0)
|v−w| ≤ 16r (ξ0)2

|v − w|2 ≤ C(|ξ0|2 + 1),

we have for any δ > 0

n2n ≤ C |ξ0|2+δ. (13)

Iterating the inequality (12) n − 2 times, we find that there are 2n−2 points ξ0i ∈
Br0 ((v + w)/2) such that

µt (Bε(ξ0)) ≥ (C3)
∑n−3

i=0 2i
n−3∏
i=0

(
ε2r (ξ0)β−2

52i
√

2i

)2i 2n−2∏
i=1

µt/2n (Bε/5n (ξ0i ))

× exp

{
−C0t

(
|ξ0|β +

( |v + w|
2

)β n−3∑
i=0

2i +
n−3∑
i=0

2i

(
r (ξ0)√

2i

)β
)}

.

Here we have used the fact that for any ζ ∈ Sv,w(r (ξ0)/
√

2i )

|ζ |β ≤
( |r (ξ0)|√

2i

)β

+
( |v + w|

2

)β

.

By Lemma 2.5 and (13), a careful calculation yields the desired estimate.
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